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ABSTRACT

This paper presents the progress made in the controller
design and operation of a flywheel energy storage system [1].
The switching logic for the converter bridge circuit has been
redefined to reduce line current harmonics, even at the highest

operating speed of the permanent magnet motor-generator. An
electromechanical machine model is utilized to simulate charge
and discharge operation of the inertial energy in the flywheel.
Controlling the magnitude of phase currents regulates the rate of
charge and discharge. The resulting improvements are
demonstrated by simulation.

INTRODUCTION

A flywheel energy storage system is being considered as a
replacement for the traditional electrochemical battery system in
spacecraft electrical power systems. The flywheel system is
expected to improve both the depth of discharge and working
life by a factor of 3 compared with its battery counterpart [2].
Although flywheels have always been used in spacecraft
navigation and guidance systems, their use for energy storage is
new. However, the two functions can easily be combined into a
single system. The NASA Glenn Research Center [3], in a
cooperative activity with industry and academia, has
spearheaded a developmental effort that will culminate in an
experiment to replace one battery pack on the International
Space Station (ISS) with a flywheel unit. Simulation of the
flywheel system operation in support of this effort continues.

In previously reported work [4], the charging and
discharging process between the electrical machine and the de
bus, via the converter, was simulated to show the power transfer
that takes place in the respective modes. However, the electrical
machine was a circuit element and not an electromechanical

device. Thus, inertial energy transfer could not be simulated as
a continuous function of machine speed. Also, the harmonic
content of the motor phase currents was much too high to be
easily corrected by filters alone.

This paper addresses both of the above problems. Using an
electromechanical machine model, inertial energy storage and
transfer is simulated as a function of rotational speed. Similarly,

the converter switching logic has been redefined to substantially
reduce phase current harmonic content to a manageable level.

SYSTEM DESCRIPTION

The simulated flywheel energy storage system (Fig. 1)
consists of a flywheel that is shaft-coupled to a permanent
magnet, three-phase, synchronous motor-generator unit. The
motor-generator unit is powered by adc source through a three-
phase, bidirectional, half-bridge converter. In the charge mode.
energy is transt_rred from the dc source to the flywheel by
increasing the flywheel rotational speed. The reverse operation
takes place during the discharge mode. Under the current
design, the flywheel operating speed will be between 20 000
(min.) and 60 000 (max.) rpm. Since the inertial energy stored

in a flywheel varies as the square of its rpm, it can discharge
90 percent of its maximum stored energy from maximum to
minimum speed limits. The flywheel rotational inertia constant
selection is based on energy storage requirements. Reliability
and safety considerations govern the maximum speed limit:
further lowering of the minimum limit does not yield much
additional depth of discharge. Friction and winding losses are
assumed to be insignificant.

The voltage magnitude and frequency at the machine
terminals are directly proportional to the speed of rotation.
Therefore, control of the converter operation determines the

motoring (charge) or generating (discharge) action as desired.
The phase current magnitude and phase angle determine the
amount and the direction of power, respectively. This is
achieved by pulse width-modulated (PWM) switching of the
converter switches. The switching action is also afl_ted by the
rotor position (actually, by the position of the magnet pole axis
with respect to the phase A winding axis). Such control is
known as "closed-loop control." A detailed explanation of the
controller will be given in the following section.

Nominal filter circuits are connected on the dc side of the

converter. These have not yet been tuned to further reduce
harmonic contents of the de bus voltage or current. A series-
connected inductive filter is utilized to reduce the harmonic

content of the phase windings.
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THE CONTROLLER

The switch controller is the main operating element of this
system (Fig. l). Its output controls the pulse width-modulated

operation of the converter switches to meet power requirements.
The specifics of PWM switch operation are common knowledge
and will not be described here. The lbllowing is a blief
description of the requirements that govern the switching
action.

Mode Command

The system can be operated under any one of the three
modes of Charge, Discharge, and Idle. Presently, the user sets
these as a function of time. However, they can be set on the
basis of some other operating criteria. There is also a reset
mode to start the simulation.

Switch Current Limit

The absolute value of the instantaneous current through
each switch is monitored to detect over-current conditions.

If one exists, the information is fed to the controller, which then
turns offthe PWM signal for that switch. In the simulation, it

remains so until the start of the next time step.

Motor Current Command

A three-phase, sinusoidal current is generated as a reference
for limiting and regulating the phase winding current. The
phase winding current is limited for protection and regulated to
be sinusoidal to eliminate a substantial amount of the harmonic

content. The reference current generator is fed a magnitude and
frequency value. At present, the user sets the magnitude,
although it could be generated as a function of a system
operating condition. The frequency is computed as a time
derivative of a sensed rotor position angle.

60 ° Control

The bidirectional, dc to three-phase, variable frequency ac

converter has six switches to control its operation. At any time,

switches may be ON, OFF, or PWM switched. Since the three

windings are connected together in a star point, current in one

winding returns through the other two windings. Hence, it is

necessary that the switches connecting the windings to the dc
bus be properly operated. Figure 2 shows the back electro-

magnetic field (EMF) waveforms for the three phases. The

switch connecting phase A to the positive dc bus is denoted by

A1, and that connecting to the negative dc bus is denoted by

A2. Similarly, switches connected to phases B and C are

denoted by B1 and B2, and C1 and C2, respectively. The 180°

span is subdivided into three 60 ° spans as shown. In the 0 to

60 ° span, the phase A voltage is rising towards its positive

peak, the phase B voltage is around its negative peak, and the

phase C voltage is falling away from its positive peak. This
would suggest that phases A and C should be connected to the

positive dc bus and phase B should be connected to the

negative dc bus. Also, to maintain the sine wave shape for

winding currents, the phase B switch remains ON, while

switches for phases A and C are PWM controlled. All other

switches are OFF. The switch operations are similarly

coordinated during subsequent 60 ° intervals. Figure 3 shows
operation of the same switches. The PWM mode is shown as a

series of pulses. A single wide pulse denotes the ON mode.

There are no pulses during the OFF mode.
Appropriate logic signals from the above-described

operating requirements become input to the controller, which,

in turn, produces commands to operate the converter switches.

MOTOR MODEL

The motor model is the permanent magnet synchronous
motor (PMSM) from Saber [5], the same simulation tool used
in the previous work. Model data are given below. Motor data
are based on a design by Ashman Technologies for a test
machine at NASA Glenn.

Motor model (Saber's PMSM library)

Self-inductance of winding, laH .................................. 16.7

Back EMF constant per pole pair, V/(rad/sec) .......... 0.00828

Torque constant per pole pair, Nm/A .................... 0.00828
Motor inertia constant, kg/m 2 ................................. 0.0001

Winding resistance per phase, mr2 .............................. 14.5

Number of poles .......................................................... 2
First back EMF Fourier coefficient .................................. 1

Note: The choice of motor inertia constant value was based on
reasonable simulation run time.

SIMULATION PROCEDURE

The basic simulation consisted of charging the flywheel to
a reasonably high speed, coasting at that speed, and then
discharging the flywheel to a lower speed.

Operating modes

Charge period, sec .............................................. 0 to 0.4
Idle period, sec ......................................... 0.401 to 0.475
Discharge period, sec ....................................... 0.480 to 1

Motor current limits for this simulation

Charge mode, A ....................................................... 100
Discharge mode, A ................................... 100, 75. and 50
dc (bus) power supply, V ........................................... 160
Converter switch current limit, A ................................ 150
PWM switching frequency, Hz ................................. 8000

Note: The choice of PWM switching fi'equency is based on
reasonable simulation run time.

The simulation run starts at steady state with zero flywheel
speed. The inverter circuit outputs voltage and fi'equency to the
motor during the charging process. The motor winding current
limit is set at 100 A. Initially, this constitutes charging at
constant motor current. Later, as the motor back EMF builds

up, the motor current drops down from the limit value. At a
selected point in time, the system is signaled into the
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Idlemode.Thistt,msall of the switches to OFF, and power
transfer becomes zero. The motor maintains whatever speed it
has achieved. This is possible only when the machine back
EMF cannot discharge through the switch body diode into the
dc bus. At a later time, the circuit is pulled offthe Idle mode
while it is already in the Discharge mode, the two modes being
independently controlled. Now the machine, acting as a
generator, begins discharging energy from the flywheel into the
dc bus at a constant current that is determined by the winding
current limit set by the user. Changing the current limit value
can change the discharge power. Some other criteria such as
"constant power" could be used for charging or discharging.

SIMULATION RESULTS

Figure 4 shows the results fi'om the above described
scenario. Figure 4(a) shows the Charge, Discharge, and Idle

commands. Figure 4(b) denotes the winding current limits set
by the user; there are three separate limits during discharge.
Figure 4(c) denotes Machine Speed as it increases, coasts, and
then decreases. Figure 4(d) denotes machine back EMF as it
mirrors the change in the machine speed. Figure 4(e) shows the
machine winding current, which is at the limit value in the
beginning and then decreases. When the system goes into Idle
mode. the machine current becomes zero. During the Discharge
mode, the current follows the three limit values as set by the
user.

Figure 5 is a magnified view of the first part of Fig. 4(d)
and clearly shows the increasing frequency of the back EMF
wavetbrm.

Figure 6 shows a comparison of the winding currents with
the corresponding reference currents. The winding current is not
smooth because of the PWM switching action. For the selected
value of PWM frequency, the discharge current, at 487 Hz, is
noisier than the charge current at 135 Hz because more samples
per cycle were taken in the latter.

CONCLUSIONS

An improved version of the flywheel energy storage model
has been presented. This model incor-porates an electro-
mechanical machine model, which is able to simulate energy

transfer to and from the flywheel. This operation is shown to be
explicitly user controlled but can be performed on the basis
some other sy,;tem operating criteria. This simulation also
incorporates improvements made in the controller design
for closer regulation of the machine winding current to a
sinusoidal form.
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pwm_c_top and pwm_c_bot represent phase C). The PWM mode is shown as
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